vllm.model_executor.models.bloom ¶
 Inference-only BLOOM model compatible with HuggingFace weights.
  BloomAttention ¶
  Bases: Module
Source code in vllm/model_executor/models/bloom.py
   attn  instance-attribute  ¶
 attn = Attention(
    num_heads,
    head_dim,
    scaling,
    alibi_slopes=alibi_slopes,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
)
  dense  instance-attribute  ¶
 dense = RowParallelLinear(
    hidden_size,
    hidden_size,
    bias=True,
    quant_config=quant_config,
)
  query_key_value  instance-attribute  ¶
 query_key_value = QKVParallelLinear(
    hidden_size,
    head_dim,
    total_num_heads,
    bias=True,
    quant_config=quant_config,
)
  __init__ ¶
 __init__(
    config: BloomConfig,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/bloom.py
   forward ¶
  Source code in vllm/model_executor/models/bloom.py
   BloomBlock ¶
  Bases: Module
Source code in vllm/model_executor/models/bloom.py
   apply_residual_connection_post_layernorm  instance-attribute  ¶
    input_layernorm  instance-attribute  ¶
 input_layernorm = LayerNorm(
    hidden_size, eps=layer_norm_epsilon
)
  post_attention_layernorm  instance-attribute  ¶
 post_attention_layernorm = LayerNorm(
    hidden_size, eps=layer_norm_epsilon
)
  self_attention  instance-attribute  ¶
 self_attention = BloomAttention(
    config,
    cache_config,
    quant_config,
    prefix=f"{prefix}.self_attention",
)
  __init__ ¶
 __init__(
    config: BloomConfig,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/bloom.py
   forward ¶
  Source code in vllm/model_executor/models/bloom.py
   BloomForCausalLM ¶
  Bases: Module, SupportsPP, SupportsQuant
Source code in vllm/model_executor/models/bloom.py
   make_empty_intermediate_tensors  instance-attribute  ¶
    transformer  instance-attribute  ¶
 transformer = BloomModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "transformer"),
)
  __init__ ¶
 __init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/bloom.py
   compute_logits ¶
     forward ¶
 forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
) -> Tensor | IntermediateTensors
Source code in vllm/model_executor/models/bloom.py
   get_input_embeddings ¶
     load_weights ¶
     BloomMLP ¶
  Bases: Module
Source code in vllm/model_executor/models/bloom.py
   dense_4h_to_h  instance-attribute  ¶
 dense_4h_to_h = RowParallelLinear(
    4 * hidden_size, hidden_size, quant_config=quant_config
)
  dense_h_to_4h  instance-attribute  ¶
 dense_h_to_4h = ColumnParallelLinear(
    hidden_size, 4 * hidden_size, quant_config=quant_config
)
  __init__ ¶
 __init__(
    config: BloomConfig,
    quant_config: QuantizationConfig | None = None,
)
Source code in vllm/model_executor/models/bloom.py
   BloomModel ¶
  Bases: Module
Source code in vllm/model_executor/models/bloom.py
 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324  |  | 
  make_empty_intermediate_tensors  instance-attribute  ¶
 make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states"], hidden_size
    )
)
  word_embeddings  instance-attribute  ¶
 word_embeddings = VocabParallelEmbedding(
    vocab_size, embed_dim
)
  word_embeddings_layernorm  instance-attribute  ¶
 word_embeddings_layernorm = LayerNorm(
    embed_dim, eps=layer_norm_epsilon
)
  __init__ ¶
 __init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/bloom.py
   forward ¶
 forward(
    input_ids: Tensor,
    position_ids: Tensor,
    intermediate_tensors: IntermediateTensors | None,
    inputs_embeds: Tensor | None = None,
) -> Tensor | IntermediateTensors