Bases: QuantizationConfig
 Config class for FP8 using Intel Neural Compressor.
  Source code in vllm/model_executor/layers/quantization/inc.py
  | class INCConfig(QuantizationConfig):
    """Config class for FP8 using Intel Neural Compressor."""
    @classmethod
    def get_name(cls) -> QuantizationMethods:
        return "inc"
    @classmethod
    def get_supported_act_dtypes(cls) -> list[torch.dtype]:
        return [torch.bfloat16]
    @classmethod
    def from_config(cls, config: dict[str, Any]) -> "INCConfig":
        raise AssertionError
    def get_quant_method(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        if isinstance(layer, LinearBase):
            return UnquantizedLinearMethod()
        elif isinstance(layer, FusedMoE):
            return UnquantizedFusedMoEMethod(layer.moe_config)
        return None
    @classmethod
    def get_min_capability(cls) -> int:
        raise AssertionError
    @staticmethod
    def get_config_filenames() -> list[str]:
        return []
  | 
        from_config  classmethod  
    Source code in vllm/model_executor/layers/quantization/inc.py
  | @classmethod
def from_config(cls, config: dict[str, Any]) -> "INCConfig":
    raise AssertionError
  | 
           get_config_filenames  staticmethod  
 get_config_filenames() -> list[str]
    Source code in vllm/model_executor/layers/quantization/inc.py
  | @staticmethod
def get_config_filenames() -> list[str]:
    return []
  | 
           get_min_capability  classmethod  
 get_min_capability() -> int
    Source code in vllm/model_executor/layers/quantization/inc.py
  | @classmethod
def get_min_capability(cls) -> int:
    raise AssertionError
  | 
           get_name  classmethod  
    Source code in vllm/model_executor/layers/quantization/inc.py
  | @classmethod
def get_name(cls) -> QuantizationMethods:
    return "inc"
  | 
           get_quant_method 
    Source code in vllm/model_executor/layers/quantization/inc.py
  | def get_quant_method(
    self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
    if isinstance(layer, LinearBase):
        return UnquantizedLinearMethod()
    elif isinstance(layer, FusedMoE):
        return UnquantizedFusedMoEMethod(layer.moe_config)
    return None
  | 
           get_supported_act_dtypes  classmethod  
    Source code in vllm/model_executor/layers/quantization/inc.py
  | @classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
    return [torch.bfloat16]
  |